The mean tool computes the arithmetic mean along the specified axis.
import numpy
my_array = numpy.array([ [1, 2], [3, 4] ])
print numpy.mean(my_array, axis = 0)        #Output : [ 2.  3.]
print numpy.mean(my_array, axis = 1)        #Output : [ 1.5  3.5]
print numpy.mean(my_array, axis = None)     #Output : 2.5
print numpy.mean(my_array)                  #Output : 2.5Var:
The var tool computes the arithmetic variance along the specified axis.
import numpy
my_array = numpy.array([ [1, 2], [3, 4] ])
print numpy.var(my_array, axis = 0)         #Output : [ 1.  1.]
print numpy.var(my_array, axis = 1)         #Output : [ 0.25  0.25]
print numpy.var(my_array, axis = None)      #Output : 1.25
print numpy.var(my_array)                   #Output : 1.25Std:
The std tool computes the arithmetic standard deviation along the specified axis.
import numpy
my_array = numpy.array([ [1, 2], [3, 4] ])
print numpy.std(my_array, axis = 0)         #Output : [ 1.  1.]
print numpy.std(my_array, axis = 1)         #Output : [ 0.5  0.5]
print numpy.std(my_array, axis = None)      #Output : 1.11803398875
print numpy.std(my_array)                   #Output : 1.11803398875Task:
You are given a 2-D array of size N x M.
Your task is to find: 
- The mean along axis 1
- The var along axis 0
- The std along axis None
Input Format:
The first line contains the space-separated values of N and M.
The next N lines contain M space-separated integers.
Output Format:
- First, print the mean.
- Second, print the var.
- Third, print the std.
Sample Input:
2 2
1 2
3 4Sample Output:
[ 1.5  3.5]
[ 1.  1.]
1.11803398875Solution:
import numpy
array = []
n, m = map(int, input().split())
for _ in range(n): 
    array.append(list(map(int, input().split())))
array = numpy.array(array)
print(numpy.mean(array, axis=1))
print(numpy.var(array, axis=0))
print(round(numpy.std(array), 11))
No comments:
Post a Comment