import numpy
a = numpy.array([1,2,3,4], float)
b = numpy.array([5,6,7,8], float)
print a + b #[ 6. 8. 10. 12.]
print numpy.add(a, b) #[ 6. 8. 10. 12.]
print a - b #[-4. -4. -4. -4.]
print numpy.subtract(a, b) #[-4. -4. -4. -4.]
print a * b #[ 5. 12. 21. 32.]
print numpy.multiply(a, b) #[ 5. 12. 21. 32.]
print a / b #[ 0.2 0.33333333 0.42857143 0.5 ]
print numpy.divide(a, b) #[ 0.2 0.33333333 0.42857143 0.5 ]
print a % b #[ 1. 2. 3. 4.]
print numpy.mod(a, b) #[ 1. 2. 3. 4.]
print a**b #[ 1.00000000e+00 6.40000000e+01 2.18700000e+03 6.55360000e+04]
print numpy.power(a, b) #[ 1.00000000e+00 6.40000000e+01 2.18700000e+03 6.55360000e+04]
HackerRank Python Solution - Numpy Topic - Array Mathematics
Basic mathematical functions operate elementwise on arrays. They are available both as operator overloads and as functions in the NumPy module.
HackerRank Python Solution - Numpy Topic - Eye and Identity
Identity:
The identity tool returns an identity array. An identity array is a square matrix with all the main diagonal elements as 1 and the rest as 0. The default type of element is float.
import numpy
print numpy.identity(3) #3 is for dimension 3 X 3
#Output
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]
HackerRank Python Solution - Numpy Topic - Zeros and Ones
Zeros:
The zeros tool returns a new array with a given shape and type filled with 0's.
import numpy
print numpy.zeros((1,2)) #Default type is float
#Output : [[ 0. 0.]]
print numpy.zeros((1,2), dtype = numpy.int) #Type changes to int
#Output : [[0 0]]
HackerRank Python Solution - Numpy Topic - Concatenate
Concatenate:
Two or more arrays can be concatenated together using the concatenate function with a tuple of the arrays to be joined:
import numpy
array_1 = numpy.array([1,2,3])
array_2 = numpy.array([4,5,6])
array_3 = numpy.array([7,8,9])
print numpy.concatenate((array_1, array_2, array_3))
#Output
[1 2 3 4 5 6 7 8 9]
HackerRank Python Solution - Numpy Topic - Transpose and Flatten
Question 2 - Transpose and Flatten
Task
You are given an NxM integer array matrix with space-separated elements (N= rows and M= columns).
The question is to print the transpose and flatten the results.
Input Format
The first line contains the space-separated values of N and M.
The next N lines contain the space-separated elements of M columns.
Subscribe to:
Posts (Atom)
You might also like
Deploy your Django web app to Azure Web App using App Service - F1 free plan
In this post, we will look at how we can deploy our Django app using the Microsoft Azure app service - a free plan. You need an Azure accoun...