HackerRank Python Solution - Math Topic - Polar Coordinates

  • Polar coordinates are an alternative way of representing Cartesian coordinates or Complex Numbers.
  • A complex number z = x + yj,  is completely determined by its real part x and imaginary part y. Here, j is the imaginary unit. 
  • A polar coordinate (r,φ) is completely determined by modulus r and phase angle φ.
  • If we convert complex number z to its polar coordinate, we find:
    • r: Distance from to origin, i.e., √ (x^2 + y^2)
    • φ: Counterclockwise angle measured from the positive x-axis to the line segment that joins z to the origin. 
  •  Python's cmath module provides access to the mathematical functions for complex numbers.

HackerRank Python Solution - Numpy Topic - Linear Algebra

The NumPy module also comes with a number of built-in routines for linear algebra calculations. These can be found in the sub-module linalg.

linalg.det:

The linalg.det tool computes the determinant of an array.

print numpy.linalg.det([[1 , 2], [2, 1]])       #Output : -3.0
linalg.eig:

The linalg.eig computes the eigenvalues and right eigenvectors of a square array.

HackerRank Python Solution - Numpy Topic - Polynomials

Poly:

The poly tool returns the coefficients of a polynomial with the given sequence of roots.

print numpy.poly([-1, 1, 1, 10])        #Output : [  1 -11   9  11 -10]
Roots:

The roots tool returns the roots of a polynomial with the given coefficients.

HackerRank Python Solution - Numpy Topic - Inner and Outer

Inner:

The inner tool returns the inner product of two arrays.

import numpy

A = numpy.array([0, 1])
B = numpy.array([3, 4])

print numpy.inner(A, B)     #Output : 4

HackerRank Python Solution - Numpy Topic - Dot and Cross

Dot:

The dot tool returns the dot product of two arrays.

import numpy

A = numpy.array([ 1, 2 ])
B = numpy.array([ 3, 4 ])

print numpy.dot(A, B)       #Output : 11

HackerRank Python Solution - Numpy Topic - Mean, Var, and Std

Mean:

The mean tool computes the arithmetic mean along the specified axis.

import numpy

my_array = numpy.array([ [1, 2], [3, 4] ])

print numpy.mean(my_array, axis = 0)        #Output : [ 2.  3.]
print numpy.mean(my_array, axis = 1)        #Output : [ 1.5  3.5]
print numpy.mean(my_array, axis = None)     #Output : 2.5
print numpy.mean(my_array)                  #Output : 2.5
By default, the axis is None. Therefore, it computes the mean of the flattened array.

HackerRank Python Solution - Numpy Topic - Min and Max

Min:

The tool min returns the minimum value along a given axis.

import numpy

my_array = numpy.array([[2, 5], 
                        [3, 7],
                        [1, 3],
                        [4, 0]])

print numpy.min(my_array, axis = 0)         #Output : [1 0]
print numpy.min(my_array, axis = 1)         #Output : [2 3 1 0]
print numpy.min(my_array, axis = None)      #Output : 0
print numpy.min(my_array)                   #Output : 0
By default, the axis value is None. Therefore, it finds the minimum over all the dimensions of the input array.

You might also like

Deploy your Django web app to Azure Web App using App Service - F1 free plan

In this post, we will look at how we can deploy our Django app using the Microsoft Azure app service - a free plan. You need an Azure accoun...